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FOREWORD

This document presents the results of work performed

by personnel of the Fluid Mechanics Section of the Lockheed-

Huntsville Research & Engineering Center, Huntsville, Alabama.

This work was performed for the Aerodynamic Systems Analysis

Section of the NASA-Johnson Space Center, Houston, Texas, (Con-

tract NAS9-13429) in support of Space Shuttle plume impingement

studies. The technical monitor for this contract is Mr. Barney

B. Roberts, EX-32.
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SUMMARY

The Streamline Divergence Program was developed to demonstrate

the capability to trace inviscid surface streamlines and to calculate "outflow

corrected" laminar and turbulent convective heating rates on surfaces sub-

jected to exhaust plume impingement. The analytical techniques used in

formulating this program are discussed. A brief description of the Stream-

line Divergence program is given along with a user's guide. The program

input and output for a sample case are also presented.

111
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Section 1

INTRODUCTION

Most current theories used in predicting convective heat transfer

rates on body surfaces subjected to exhaust plume impingement do not

utilize an adequate outflow correction theory. When a plume impinges on

a surface at some angle of inclination, there is an outflow-induced thinning

of the boundary layer, and a corresponding increase in the convective heat-

ing rates to the surface. Application of current methods for predicting con-
vective heat transfer (without an adequate outflow correction theory) often

results in the predicted heating rates being considerably lower than the ex-

perimentally measured heating rates. Without an outflow analysis to deter-

mine the severity of the thinning of the boundary layer and the corresponding

increase in convective heating rates it is very difficult to make experimental-

theoretical comparisons. Under such circumstances, experimental-theoretical

comparisons can result in erroneous conclusions. For example, convective
heating rates are determined by both turbulent and laminar theory. The con-
vective heating rates determined by turbulent theory are found to compare
more favorably with experimental data than by laminar theory. The con-

clusion is then made that the experimental data are turbulent which may
actually be laminar. When proper outflow correction theory is applied, such
erroneous conclusions can hopefully be avoided. The results determined by
laminar theory and by turbulent theory should compare favorably with the
laminar and turbulent data, respectively.

The computer program described in this report has been developed
to: (1) demonstrate the capability to trace inviscid surface streamlines and
calculate "outflow corrected" laminar and turbulent heating rates on a body
subjected to rocket exhaust plume impingement (It is capable of analyzing
impingement due to any supersonic flow field); and (2) improve the existing

LOCKHEED- HUNTSVILLE RESEARCH & ENGINEERING CENTER
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convective heat transfer prediction techniques (which do not apply outflow

correction theory) of the Lockheed-Huntsville Plume Impingement Computer

Program (PLIMP) (Ref. 1-1).

The analytical methods used in performing the inviscid surface stream-

line and convective heat transfer calculations are described in Section 5 of

Ref. 1-2. The Streamline Divergence program can be used to make: (1) com-

parative evaluations of the effects of plume impingement due to different

propulsion system configurations; (2) parametric studies; and (3) vehicle

design studies.

1-2
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Section 2

PLUME IMPINGEMENT ANALYSIS USING THE STREAMLINE
DIVERGENCE METHOD

An analysis to trace inviscid surface streamlines and calculate "out-

flow corrected" heating rates on surfaces subjected to exhaust plume impinge-

ment is a rather detailed procedure. The Streamline Divergence program

is the means by which the final results are obtained. This section is intended

to familiarize the program user with the data used by the Streamline Diver-

gence program, and the means by which the data are generated. A brief com-

putational scheme is presented in the following paragraphs.

The prominent features of the computational scheme required in order

to completely describe the environment of a vehicle subjected to exhaust plume

impingement, and the effects of this environment on the vehicle are:

. Description of the thermochemical behavior of the
propellant system,

* Prediction of the undisturbed exhaust plume properties

via gas dynamic and thermochemical methods,

* Prediction of the body local flow properties for a
surface immersed in an exhaust plume,and

* Prediction of heating rates to the surface.

The thermochemical properties are calculated using the NASA-Lewis

TRAN72 computer program (Ref. 2-1). The free, undisturbed plume local

flow properties are computed using the method of characteristics (Ref. 2-2),

with the computations accomplished using the Lockheed-Huntsville Variable

O/F Method-of-Characteristics (VOFMOC) computer program (Ref. 2-3).

The body local flow properties for a surface immersed in a free plume are

calculated using the PLIMP program. Finally the heating rates to the sur-

face are calculated using the surface geometry and impingement properties.

2-1
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2.1 THERMOCHEMICAL ANALYSIS

The thermochemical properties of the propellant system being analyzed

are computed assuming the combustion products to be chemically frozen or

in local chemical equilibrium. The thermochemical properties are obtained

by computing the flowfield expansion properties from specified engine com-

bustion chamber conditions using the NASA-Lewis TRAN72 computer program.

The TRAN72 program has been modified to generate a binary tape containing

all the pertinent parameters needed for flowfield and heat transfer analysis

including the mole fractions of each constituent. This method reduces much
of the tedious and time-consuming effort normally necessary to prepare input
for a single flowfield calculation.

2.2 UNDISTURBED FLOWFIELD ANALYSIS

The VOFMOC program is used to calculate the exhaust plume flow fields.

Utilizing the VOFMOC program, the exhaust plume for any arbitrary nozzle

and exhaust gas (ideal or reacting) system with gradients in the oxidizer/fuel

ratio can be calculated. At finite back pressures the program normally gene-
rates the plume flow field using the flow regime continuum methods. As the
back pressure is lowered, the outer regions of the plume become progres-
sively more rarefield until eventually the flow becomes free molecular. The
VOFMOC program permits transfer of the calculations from a continuum
analysis to a free molecular analysis across a "freeze" front in the flow field.

2.3 BODY LOCAL FLOW PROPERTIES ANALYSIS

The PLIMP program is used to calculate body local flow properties for
a surface immersed in a free plume. The PLIMP program locates each im-
pinged body and the particular motor with respect to a reference coordinate
system. The impinged bodies are then further divided into small elemental
areas over which uniform approach flow is assumed. The geometrical sub-
shapes which the computer program can analyze are shown on the following
page.

2-2
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* Conic shapes, i.e., cones, cone frustums, cylinders

* Flat plates, i.e., rectangular, circular, triangular

* Airfoil shapes, and

* Arbitrary axisymmetric bodies whose surface curva-
ture can be described by a polynomial curve fit
(maximum of fourth degree).

The local flow conditions on a given elemental area are obtained by

locating the centroid of each elemental area in the free plume from a search

of the plume flowfield tape. The local impingement angles are obtained using

the local flow velocity vector and the elemental area unit-normal vector.

Shock calculations are then performed to obtain the local flow properties.

An iterative solution is used to perform the equilibrium shock calculations

for a real or ideal gas. The real and ideal gas calculations are similar, the

difference being that the ideal gas solution converges on the first iteration.

A more detailed description of the equilibrium shock calculations is given

in Ref. 2.4. Forces and moments are then obtained by numerically integrating

the local impact pressure distribution over the body.

Pressures can be calculated in continuum flow using Newtonian theory;

modified Newtonian theory; or oblique shock theory; in free molecular flow

using kinetic theory; and in transitional flow using empirical relationships.

Convective heating rates in the continuum or transitional flow regimes

are calculated (outflow correction theory is not applied). Heating values for

continuum-laminar, continuum-turbulent and transitional flow are calculated

The method used for the calculation of heat transfer to a body in the trans-

itional regions of the plume has been previously presented in Ref. 2.4. Basic-

ally, it amounts to a continuum solution correction to account for the effects

of a slip velocity and temperature jump at the surface. Free molecular heat-

ing rates are calculated at each elemental area from an energy balance-type

equation.

2-3
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2.4 STREAMLINE DIVERGENCE ANALYSIS PROGRAMS

The computer programs and calculational techniques described pre-

viously have been combined in an automated fashion to fully describe the

vehicle environment and the effects of this environment on the vehicle. A

schematic flow chart of the calculational process and the flow of information

is given in Fig. 2-1. The arrangement in Fig. 2-1 allows the greatest flexi-

bility with a minimum of effort and prevents redundant calculations. For

instance, if the heating effects are desired for a previously developed plume,

but a new body, then only the PLIMP and Streamline Divergence programs

need be rerun.

2-4

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC TM D390450

TRAN72 Program Calculations
Calculations

Master
Tape

Nozzle I Printed
Solution Output

Method-of-
Characteristics

Analysis
(VOFMOC Program) Plume Printed

Solution Output

Plume
Tape

PMP rBody Local Printed

Divergence Printed

Program liOutput

Fig.2-So - Calculational Process

Local
Flowfield

Tape

Streamline Heating Printed
Divergence Rate
Program Analysis

Fig. 2- - Calculational Process
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Section 3

CALCULATION OF CONVECTIVE HEATING RATES USING
A STREAMLINE DIVERGENCE METHOD

This section describes the analytical procedures used by the Stream-

line Divergence program. The analysis permits the tracing of inviscid

surface streamlines, and the calculation of "outflow corrected" convective

heating rates on surfaces subjected to exhaust plume impingement. Basic-

ally, the procedure is the following: the Streamline Divergence program

applies the Method of the Bicubic Piecewise Polynomial Functions to the

impingement pressure distributions calculated by the PLIMP program so
that the pressure distribution over the entire body may be described by

functional means. The same calculations are applied to the local velocity,

local entropy, freestream velocity and freestream entropy distributions

determined by the PLIMP program. Once these calculations are performed,

the body local flow properties are defined over the entire body in functional

terms. The Streamline Divergence program next applies DeJarnette's (Ref.
3-1) streamline divergence methods to determine the streamline patterns

and corresponding "equivalent radius" or metric coefficient for the particular
body surface subjected to exhaust plume impingement. Convective heating
rates for a laminar and turbulent boundary layer are calculated using the
integral form of the energy equation. The effects of variable freestream

velocity, density and pressure are accounted for through the use of the ap-
propriate transforms of the flat plate solution. Reynolds number is output
in order for the user to choose the most applicable of the two convective
heating rates that are provided.

3.1 METHOD OF THE BICUBIC PIECEWISE POLYNOMIAL FUNCTIONS

The tracing of inviscid surface streamlines and calculation of convective

heating rates are dependent on the surface pressure distribution. Before in-
viscid surface streamlines and heating rates can be calculated, a description

3-1
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of the pressure distribution on the body surface is needed. This pressure
distribution must yield continuous first and second derivatives in both the
axial and circumferential directions (assuming that a cylindrical coordinate
system is used). If the pressure distribution on the body surface could be
described by an analytical equation this requirement could easily be met.
Unfortunately, this is not the case; most if not all pressure distributions
cannot be described by an analytical expression. Often, only the pressure
at several points along the circumference of the body surface at several axial
stations is known, and the pressure distribution must be generated from these
data. Therefore, a numerical technique is required that will generate the
pressure distribution from these data, and calculate the required derivatives
at "any" point on the body. This technique must also be capable of performing
numerical interpolation and differentiation with a reasonable degree of accuracy.

Experience has shown that numerical differentiation methods are gener-
ally inaccurate. The method of splines (Ref. 3-2) however, has proven to be
an effective method for numerical interpolation, differentiation and integration.
The two-dimensional or bicubic spline (which is needed for a three-dimensional
axisymmetric body) is able to perform these operations accurately due to the
strong convergence properties it possesses.

The Streamline Divergence program applies the Method of the Bicubic
Piecewise Polynomial Functions to the pressure distribution determined by
the PLIMP program so that the pressure distribution may be described in a
functional means. The governing equations, as derived in Ref. 3-2 may be
written as follows:

P(x, ) = C00) + + C100 )) +C 1 ( )

+ ... +C 33 = C (3.1)
i=0 j=0

3-2
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ap(x, ) xi j- (3.2)

i=0 j=1

(x, a) = iCi i- (3.3)

i=1 j=0

aPa~ (A (3.4)x (x, ) = ij C i-13.4)

i=1 j=1

(x, ) = j 1) Cij & (3.5)

i=O j=2

2  1) i
(x, ) = i(i- ) ij i-j (3.6)

i=2 j=O

where:

P = local flowfield property of interest

Cij = coefficients for the polynonial P (x, #)

and the corresponding coordinate system used is presented in Fig. 3-1. The
same equations are applied to the local velocity, local entropy, freestream
velocity and freestream entropy distributions determined by the PLIMP pro-
gram. Once these calculations are performed, the body local flow properties
are defined over the entire body in functional terms. The end result obtained
from applying the Method of the Bicubic Piecewise Polynomial Functions to

3-3
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the data presented in Fig. 3-1 is presented in Fig. 3-2. The pressure surface

is completely specified by individual sets of coefficients which uniquely

describe a bicubic polynomial function in each region over the entire pressure

surface. At any point on the surface, the pressure and pressure derivatives

can be determined by using Eqs. (3.1) through (3.6) and the corresponding set

of coefficients.

Briefly, to determine the value of a particular flowfield property at a

point defined by X and # on the body surface, the region R.. which contains

x and 0 is first specified. Equations (3.1) through (3.4) are then evaluated

at each of the four corners of the region R... These equations make up a

set of sixteen simultaneous equations to be solved for the sixteen coefficients

describing the particular flowfield property of interest in region R... The 16

coefficients are solved for, and then with the value of X and # substituted intq
Eq. (3.1) to yield the particular flowfield property value.

3.2 THE STREAMLINE DIVERGENCE METHOD

At this point, the body local flowfield properties are defined over the

entire body in functional terms. The Streamline Divergence program next

applies the methods of DeJarnette (Ref. 3-1) to determine the streamline

patterns and calculate the corresponding "equivalent radii" or metric coef-

ficients along each streamline for the particular geometry subjected to ex-

haust plume impingement. The general form of the equations, as derived

in Ref. 3-1 may be written as follows:

DS - - sine cosF IxxDS pv2 ax P

(cose cos6 + sine sin6 sinF) a+ af P

(sine cos6o - cose sin6o sin )  o
sinr cose cosr " +  - (3.7)ax f

3-5
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Dx = cos0 cosF (3.8)
DS

sine cos 6  - cose sin6 sinF(
DS =  f(3.9)DS f

1 Dh s 1 a L 2
= -h (P/Ps) (3-M )

p 2

+ (P/Ps)
pV2 h aP h as

cos F Cos ar a (3.10) ar
+ x 5 x (3.10)

where

DS = differential arc length along a streamline

P = stagnation pressure

p = mass density

V = inviscid speed on surface

0 = inclination angle of the inviscid surface streamline

P = static pressure

f = body radius, measured from the longitudinal axis

x = longitudinal coordinate

= circumferential angle

_ ( Df \2 I f\ +g x + f +1

af

r = body angle defined by sin? = x

g1/2

3-7
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1 8f

6 = body angle defined by sin6 2 1/2

[+1/

a E- 6

1 = coordinate normal to the streamline on the body surface

h = "equivalent radius" or metric coefficient in the P direction

M = Mach number

For a cylinder, which is the only geometry currently considered by the Stream-

line Divergence program; the angles F and 6 are identically equal to zero,

reducing Eqs. (3.7) through (3.10) to:

D-= [ sine - (P/Ps) + cos (P/P) (3.11)

DxDS= coso (3.12)

D sin6DS fsn (3.13)
DS f

2 P a(/ (P/P )
I D sinW + (3 - M 2)h DS2 ax f (f

1 Dh ) P oso a (P/P ) sinO a(P/Ps)

h DO (_h Ds ax f

P a (P/Ps) a 2 (P/P
+ s - sinO cosO + sin 0

pV x

2 2 a 2 (p/p )
2 sinO cosO + cos a s/ (3.14)
T axa 2 

3-8
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respectively. It should be noted at this point that other geometries can

easily be incorporated into the Streamline Divergence program simply by

making the proper substitutions into Eqs. (3.7) through (3. 10) to yield new

applicable Eqs. (3.11) through (3.14).

The values of local static pressure, velocity and the derivatives

aP aP 2 p a2 p 2
ex .' -- ' - x ' -;- and

are determined by using the bicubic piecewise polynomial functions at the

correct geometric location on the body surface. The inviscid surface stream-

lines and their corresponding metric coefficient, h, are calculated by numer-

ically integrating Eqs. (3.11) through (3.14) simultaneously. The numerical

integration scheme used is the fourth order variable step size Runge-Kutta

method. The initial conditions required to start the integration of each

streamline are determined external to the program and input by means of

punched data cards.

3.3 RELATIONSHIP OF THE METRIC COEFFICIENTS TO CONVECTIVE
HEAT TRANSFER THEORY

The convective heating rates for a laminar and turbulent boundary layer
are calculated using the integral form of the energy equation. The effects of
variable freestream velocity, density and pressure are accounted for through

the use of the appropriate transforms of the flat plate solution. Non-constant
properties through the boundary layer are also accounted for.

In Ref. 3-3 (among others) it is shown that the energy equation can be
reduced to an equation with enthalpy as the dependent variable under a number
of different conditions including some cases where there is dissociation,
chemical reaction and mass diffusion within the boundary layer. The com-

plete development of the enthalpy form of the equation and the evaluation of

the surface heat rate are presented in Ref. 3-3.

3-9
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Based on examination of several "exact" laminar boundary layer solu-

tions, Eckert (Ref. 3-4) recommends that the effects of variable gas properties

through the boundary layer can be accounted for by simply evaluating the prop-

erties at a "reference enthalpy" and using these values in the constant property

solutions as obtained by Blasius. Based on this method, the convective heating

rate to the wall is evaluated using:

Laminar Boundary Layer

* V 0.5
0.332 (p V )0.33 P23 e (H- h ) (3.15)

- * 2/3 .5 r hw
Pr XL

where: XL = laminar characteristic running length. XL is obtained for

variable property flow over an arbitrary shape, by numerically.

integrating the following equation along a flowfield streamline,

(Ref. 3-3)

S
1 ** 2

L * Ve h dS
p pe h1 VhP e o

H = adiabatic wall enthalpy

V 2  V2
r =h + oo e

r 00oo 2 (1

r = recovery factor

3-10
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Turbulent Boundary Layer

0.0292 .8 .2 (3.16)

1 +.212 Re ' (P e T r w

where: XT = turbulent characteristic running length

S
1 - * * h. 2 5

T * * 1.25 eh
p Ve h

Re = turbulent Reynolds number

* *
Re T = pVeXT/

r = P* 1/3
r

P = Prandtl numberr

p = absolute viscosity

Ve = velocity at the edge of the boundary layer

V = freestream velocity

h = wall enthalpyw

h = freestream enthalpy

S = wetted length along the streamline

h = metric coefficient

The starred (*) properties refer to properties evaluated at a temperature

corresponding to a "reference enthalypy," H*, where

3-11
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H = h e + 0.5(H - he) + 0.22 (H r - he )

h e = static enthalpy at the boundary layer edge

H = stagnation enthalpy

The wall enthalpy (hw ) in Eqs. (3.15) and (3.16) may be calculated

assuming either an infinitely fast recombination rate in the boundary layer

(chemical equilibrium) or an infinitely slow recombination rate (chemically

frozen). The upper extreme to the convective heating rate is determined

by assuming equilibrium chemistry throughout the boundary layer and a
fully catalytic wall. The lower extreme to the convective heating rate is

determined by assuming a frozen thermal boundary layer and a non-catalytic

wall.

Eckert's reference enthalpy method has been chosen for use in the

above analysis for demonstration purposes. Other methods do exist (though

they have not been evaluated under the present study) that may be applied to

the problem of exhaust plume impingement and, can be incorporated into the

computer code with a minimum of programming difficulty.

3-12
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Section 4

USER'S INPUT GUIDE FOR THE STREAMLINE
DIVERGENCE COMPUTER PROGRAM

The Streamline Divergence program utilizes three forms of input: (1)
data statements within the program; (2) magnetic tapes; and (3) punched data
cards. Data statements are used to input thermodynamic data (for reaction
products in functional form) that seldom change. Magnetic tapes and punched
data cards are used to input data that frequently vary from one exhaust plume
flow field to another or from run to run. The program magnetic tape assign-
ments are given in Table 4-1. Each punched data card and its use is explained
in Section 4. 1.

4.1 PROGRAM INPUT GUIDE

Card 1: Program Control Card

Format Column Item

1615 5 NFIT, number of flowfield properties to be
curve fit using the Method of Bicubic Piece-
wise Polynomial Functions (upper limit of 5)

10 IUNIT, tape unit number on which impinge-
ment data are written

15 NOXCUT, number of axial printout intervals
20 NOYCUT, number of angular printout intervals
25 JMAX, number of points on each streamline

where heating rates are to be calculated
(upper limit of 150)

30 ICARD, number of species data input on
punched data cards

35 NPRINT, control option that indicates to print
(= 1) or not to print (= 0) intermediate data
(used during program checkout procedures)

4-1
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Table 4-1

MAGNETIC TAPE ASSIGNMENTS FOR THE STREAMLINE
DIVERGENCE PROGRAM

Tape Units
Where Required U-1108 Tape Unit Function

Section 1

Subroutine PLIRED IUNIT Impingement data generated
by the PLIMP program (input
data)

Subroutine PLIRED is
the controlling routine which
arranges the PLIMP output
in the form used by the
data acquisition routines.
This subroutine is called
once at the beginning of
each run.

Section 2

Convective Heating Rate 3 Thermochemical properties
Analysis data generated by the TRAN72

program (input data)

This section performs the
convective heating rate
analysis along each inviscid
surface streamline being
traced.
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Card 2:

Format Column Item

1615 5 NOSL, number of individual streamlines to
be traced (upper limit of 10)

Card 3: This card contains the initial conditions required to start the
tracing of each streamline utilizing the fourth order variable
step-size Runge-Kutta method. There is one card for each
streamline to be traced.

6F10.4 1-10 XSTART, initial axial location of streamline (in.)

11-20 YSTART, initial angular location of streamline
(rad)

21-30 TSTART, initial streamline direction (rad)
31-40 HSTART, initial metric coefficient (in.)

41-50 ASTART, initial derivative of metric coefficient
with respect to streamline coordinate (in./in.)

51-60 DELS, integration step size along streamline (in.)

Card 4:

10E11.4 1-11 TWALL, body surface wall temperature. Assumed
to be constant over the entire body (OR)

Card 5:

1615 5 NENTLP, control option that indicates to calculate
wall enthalpy assuming frozen (=1) or equilibrium
(=2) chemistry throughout the boundary layer.

Card(s) 6: Species concentration cards (used when NENTLP = 2, and
ICARD > 0). This card(s) specifies the mole fractions of the
flowfield gas composition.

4(A6, 4X, 1-6 Chemical species name, i.e., H2 , H2 0
E10.6) 21-26

41-46
61-66

11-20 Mole fraction
31-40
51-60
71-80

4-3
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The species names are left-adjusted.

Cards 7, 8 and 9: Wall enthalpy array cards (used when NENTLP = 1). These
cards are used to define wall enthalpy as a function of impinge-
ment pressure and body surface wall temperature.

Card 7:

Format Column Item

515 5 NPWALL, number of independent pressures in
the impingement pressure array

10 NTWALL, number of independent temperatures
in the body surface wall temperature array

Card(s) 8 and 9:

E10.6/
(8E10.6)

Card 8:

1-10 TWALL, temperature in body surface wall
temperature array (OR)

Card(s) 9:

1-10 PWALL, pressure in the impingement pressure
21-30 array (psi)
41-50
61-70

11-20 HWALL, corresponding dependent wall enthalpy
31-40 (Btu/lbm)
51-60
71-80

Cards 8 and 9 are repeated NTWALL times.
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Card 10: This card contains identifying information for the particular problem
of interest. This information is printed at the top of each page of
the output.

Format Column Item

I2A6, 15 1-72 Comment card; header information such as
problem title may go in these columns.

73-77 Case number of the particular problem being
analyz ed.

4-5
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Section 5

PROGRAM NOMENCLATURE

The Streamline Divergence Program, like all computer programs,

contains its own particular system of terms. This section presents a list

of all "key" nomenclature used in the program, and may be used as a quick

reference when working with the program.

5-1
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/IA:.,IA1 IN rIAL F II1C II IUt IVAI IVL OF MLIIC CULEFF ICIENT WITH RESPECT TO

UISTANCL ALUNG A STRLAMLINL. (RLUUIREDU TU START THE TRACING OF EACH
STRLAMLI NL)

UAD- sLLCOND ERIVATIVE OF METRIC COLFFICI-NT WITH RESPECT TO DISTANCE
ALONG A STREAMLINe

ULL I NTLGRA l I u STEP SIZE ALONG A STREAMvILINL (INCHES)

L)HL.:- FIN$T DJRIVATIVi.:. OF METRIC COLFFICIENT WITH RESLPECT TO DISTANCE
ALONG A STRLAMLINE

UTuL FIRjT ULRIVATIVE OF sTRLAMLINL DIRLCTION WITH RESPECT TO DISTANCE
ALONG A STILAMLINL

FlIXU: l)IT DLRIVIATIVe OF X wITH RESPECT TO UISTANCL ALONG A STREAMLINE

L) Yu:, hI-, LT ULIVATIVE OF PHI wITH RLSPECT TU UDbTANCE ALONG A STREAMLINE

LA i LAIIlINAR AUIABATIC WALL ENIHALPY (UTU/LIvl)

LAwT TURHULLENT AU)IAUATIC WALL LNTHALPY (bTU/LUbvi)

LW WALL ENTHALPY (bTU/LM)

HLTAR1 -INITIAL MErRIC COEFFICIENT OF TREAMLINE (REQUIRED To STAiT THE
TRACING OF EACH STREAMLINE) (INCHES)

HL LNrHALPY AT THE _LDGL OF THE bOUNDARY LAYER (UTU/LBM)

HALL ENTHALPY liN THE wALL ENTHALPY ARRAY (DTU/LIjlBM)

H2 ,ILTRIC LULF ICIl.NT (INCHcS)

ICAkU NUilL3ER OJF SPLCIE DATA INPUT ON PUNCHED DATA CARDS

IUNI T TAPE UNIT NUMBER ON WHICH IMPINGEMENT DATA IS WRITTEN

J1VAX NUMBL:R OF POINTS ON EACH STRLAMLINE WHERE HEATING RATS ARE TO bE
CALCULA TE

NDL-A COUNTER TriAT INulICATES THE NUMIIbER OF THE INVISCID bURFACE STRLEAMVLINL
PRESLNTLY BEING TRACED

NENTLP CONTROL OPTION THAT INDICATES TO CALCULATe WALL ENTHALPY ASSUMING
FRZ.)LN (=1) UR EUUILIbRIUf\M (=2) CHEIvISTHY THRUUGHOUT THE OUNDARY
LA ER

NF 1 NUMBLR UF FLOW FIELU PRPLERTIES TO bL CURVL FIT USING THE MLTHOD
O tIICUDIC PIECLWISE POLYNOiVilAL FUNCTIONS

NOSL NUMIULR OF INUIVIDUAL STREAMLINES TO bt TRACEU

IIOUXLUT NUOl3UER oF AXIAL PRINT OUT INTERVALS

NOYLUT NUMvlBER UF ANGULAR PHINT OUT INTERVALS

ORGINAL PAGE T 5-2
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NPRINT CONTROL OPTIUN THAT INDICATES TO PRINT (=1) OR NOT TO PRINT (=0)

INFERMEUIATE DATA

I'JPw'MLL NUMBER uF INUEPENDENT PRESSURES IN THE IMviPINGEIVIENT PRESSURE ARRAY

NTrALL NUMBER oF INDEPENDENT TEMPERATURES IN THE BOUY SURFACE WALL

TEMPERATURE ARRAY

PHI ANGULAR LUCATIOIN ON THE BODY SURFACE (RADIANS)

PR LOCAL PRANiDTL NUMBER

PRE REFERENCE LAMINAR LOCAL PRANDTL NUMBER

PRST REFERENCE TURBULENT LOCAL PRANDTL NUIMBiER

PW LuCAL IMIPINGLMENT PRESSURE (PSF)

PjiALL PREbbURL IN THE I MPINGEiMELNT PRESSURE ARRAY (PSI)

UL LAMINAR CONVECTIVE HEATING RATE (BTU/FT**2 SEC)

UT TURBULENT CONVECTIVE HEATING RATE (UTU/FT**2 SEC)

I-ELAM LAMINAR REYNOLDS NUMBER

L LTURU TUROULENT REYNOLDS NUMBER

RHu LOCAL L)LN TY (LBM/FT**3)

HubD RHtFERENCE LAMINAR LUCAL UENSITY (LbN/FT**3)

RH03I RLFERENLE TURBULENT LOCAL DENSITY (LBM/FT**3)

S LOCAL ENTRJPY (BTU/LBo 0R)

SINh FREE STEAM ENTIOPY (BTU/LBM ovR)

TE LOCAL FLOW FIELD TEMPERATURE AT THE EDGE OF THE BOUNDARY LAYER (OR)

-K BUUY SURFACE WALL TLMPERATURE (oK)

T.~AR- INITIAL STNAIAMLINE UIRECTION (REUUIRLD TO START THE TRACING OF
EACH STREAMILINE) (RADIANS)

TW UODY SURFACE WALL TEMPERATURE (oR)

TWAL.L BOUY SURFACE WALL TEMPERATURE. ASSUIVIED TO UE CONSTANT OVER THE

ENTIRE tdOLY ( R)

U LOCAL VLLOCITY (FT/SEC)

V(ALqC'D) ARRAY UOL) 10 rTORE LOCAL FLOUW PROPERTIEL ANU THEIR OERIVATIVES AS '

FUNCTIOi' UF GEOMvlETRIC LUCATION ON THE BUDY SURFACE

V(-,-,C,-) ULhINE. THL AXIAL GLOMLTRIL LOCATION UN THE BUDY SURFACE (INCHES)

V(--.-*D) DLFINEj THL ANGULAR GEOivaLTRIC LOCATION UN THE BODY SURFACE (RADIANS)

ORIGNAL PAPe 1W 5-3
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V(-B,-,-) DEFINES THE DERIVATIVE OF V WITH RESPECT TO X (B=2)9 WITH RESPECT
TO PHI (B=3)9 OR WITH RESPECT TO X AND PHI (B=4). IF B =Iv NO
DERIVATIVt HAS BEEN TAKEN

V(A-,-,) DLFINE TIlE LOCAL FLUw PRiOPEkTY. LOCAL VELOCITY (A=1),LOCAL ENTROPY
(A=2), t"RL STREAM VELOCITY (A=3), FREL STREAM ENTROPY (A=4), AND
LULAL IM PliNGLMIENT PRESSURE (A=5)

VIS AuSOLUiTL VISCOSITY (LBMII/FT SEC)

VINf- FREL STiEAA VELUCITY (FT/SEC)

VISS RL-ERENLE LAMINAR ABSOLUTE VISCOSITY (LBM/FT SEC)

VlSbT RLFERENLE TURBULENT ABSULUTL VISCOSITY (LBM/FT SEC)

VMaX( 1) MAXIIMIUM LUCAL VELOCITY UN THE BODY SURFACE (FT/SEC)

VVIAX(2) 1MAXIMUIA LUCAL ENTROPY ON THE BODY SURFACE (BTU/LBM oR)

VMIAX(3) IMAXIMUM FRIEE ST14EAM VELOCITY (FT/SEC)

VMAX(4) MAXIMUM FREE STREAM ENTROPY (BTU/LBM oR)

V,'IAX(5) MIAXlIUM LOCAL IMviPINGEMENT PRESSURE ON THE BODY SURFACE (PSF)

X AXIAL LOCATION ON THE BOLUY SURFACE (INCHES)

XLLAN LAMINAN CHARACTERISTIC RUNNING LENGTH (INCHES)

XL-TUkU TUitrJULENT CHARACTERISTIL RUNNING LLNGTH (INCHES)

XM LUCAL IvACH NUMUER

XSTART iNITIAL AXIAL LOCATION OF STREAMLINE (REUUIRWD TO START THE TRACING
OF EACH STREAMLINE) (INCHES)

XXI AXIAL LOCATION ON THE BODY SURFACE (INCHES)

YDUT(l) THL STUIED VALUE OF DXDS

YDUT(2) THE STORED VALUE OF DYDS

YDUT(3) THE STORED VALUE OF DTDS

YDOT(4) THe STORED VALUE OF DADS

YDUT(5) THE STORED VALUE OF DHDS

YSIARI INITIAL ANIGULAR LOCATION OF STREAMLINE (REUUIRED TO START THE
TRACING OF EACH STREAMLINE) (RADIANS)

YYI ANGULAR LUCATION ON THE bOLY SURFACE (RADIANS)

ORIGINAL PAGE I 5-4
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Section 6

USE OF THE STREAMLINE DIVERGENCE PROGRAM

To familiarize the user with the operation of the program, a sample

case is presented. The user is guided through a step-by-step procedure

in setting up the data, coding the input for the program and interpreting the

output from the program.

6.1 SAMPLE PROBLEM

A typical shuttle configuration is chosen as the example. In this ex-

ample, one is interested in tracing inviscid surface streamlines, and calcu-

lating "outflow corrected" convective heating rates on that portion of the

booster fuselage subjected to exhaust plume impingement. The overall coor-

dinate system and the orientation between the booster and the orbiter engine

is shown in Fig. 6-1. The coordinate system reference point corresponds to

the first point analyzed by the PLIMP program. The upper surface of the

booster fuselage was mathematically modeled as a cylinder (radius of 5.805

in.).

6.2 IDENTIFICATION OF THE INPUT/OUTPUT DATA

The input data for the problem configuration described in Section 6.1

will be illustrated by identifying the computer printout of the input data in

Table 6-1.

The input data for the configuration of Section 6.1 is identified as

follows:

O This is an identification of the problem, and is printed at
the top of each page of data. This information is contained
in card 10 of the input.

6-1
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Table 6-1

STREAMLINE DIVERGENCE PROGRAM OUTPUT LISTING

PAGE

CASE NO* IO LOCKHEED/HUNTSVILLF STREAMLINE DIVERGENCE COMPUTER PROGRAM SAMPLE OUTPUT

0

I
m

m NFIT IUNIT NOXCUT NOYCUT JMAX

5 11 20 25 145
2

i STREAMLINE XSTART YSTART TSTART HSTART ASTART DELS

S1 3*0600 .000 *0500 5C805? .:000 *1000

m 3 3o060C *00 *150 5*805 .o00 *00,
n 4) 3.060, *000* *20 0 5.850 .0C0 .1000

5 3*o06 C 0 *250 5.800 .00 -

TWALL NENTLP ICARD

04 5q90,000 2 0
z TOTAL FREESTREAM ENTHALPY = -8667+C BTU/LBMm

C)



Table 6-1 (Continued)

0.CASE 40. a PA(. 2

%LDCXNEEON4TSVILLE STREAMLINE LaVEREPCE COMPUTER PRO~a4AM SAMPLE OUTPUT

STMfAKLINK A PHI VELOCITY ENT~nPY 4ACH RMO 04AN HANT NO TE::0;1 4L:A;;/ IFT/SEC) (FT**2/:EC0.2t:: ILMR/CF--------------- ISTUtLeMl---------------- IDE' R

Vd (sfl ILB"FT/~f4(STUVfT 's EC 0 N:f EWSLES-

*24js9*1j *3S4I-T2 *I242.ns *1876*,s *3I13*- .1734-04 -.722o0 -.5097#03 -.ssss#0oi .3919+0 q4v?4I*0k *qVA6-oq *5443#11 .5853+.1 *?799*.- .27q8*00 .2575002 OSS64#gI .404tS*o2 .4378+02rn

1 034S931 *S3?6-'2 *1299., *l727*.S -3Z221-1 .2108-04 -- 7S61+03 -.5291#03 -.5553+04 *3788*o4
*903#1 .q8ss-oq *729+-y" S9110tf .3581-1' *3S91*,jO .2644+02 -7373001 .7703+02 .8379402

z *DS)S9531 o?2%8o,2 *1313#-S .594+"%~ .339- .2S37-,34 -. 7816.03 -*S4&7* -.SSS3#Oq *3&q,.0 q
-4 0Ig914#0 *472-Tq es?06*.4~ .98+,!l .q2qs+.(! *4291.O02 *Zeqq*02 *91S9*OI .1285*03 *IioSa3

I 059021 99I5502 .333S* S *tq7s.cs .3457...j .2919-o'. -*0075+03 -eS626#03 -. SS3*0 o3499004
*i tI-)*l q'S23-04 *5635.Oc .6082.:'l qssq*,!3 *929#00 *3259.)2 .11aq*0Z .1944#03 02187#03

a *q25S II .at9-C I *,3S%+f, - .13713+13 .3S67.-l .3307-09 -.8240+03 -oS766+03 -.SS530'e *3368+04
@1213*,12 .436S-S4 *58~7.*7 *J9. *3 .SS72+,' SS52*00 .3852*02 .1321#02 .2937+03 .3208#03

a *qqS8*f1  -1307-21 *1371+-;S .1279-"s *3666.1 .3&4a2o0e -.sq16.a -#5688+.03 -.SSS3*0e .3zSa*Oq

0
*19S! -4228-'~.l 3q *S196.5 .6317-~n *3gq9*a .6182400 -33?09+O2 IS32*02o -.4S040 .449S+03

Z a SS7.I *194-,31 -138S+15 *IE986ni *3762#-1 .q3840q -. dS?3.zj3 -. S973 -.SSS3*Oi .2Y34-0
0 jg366+32 *390 7- 0 4 S972 *643s.'j *16723+1 .682l3.1 .3q&+02 *2Iq3*2~ Sl2S+.03 .6030003

1 0.S74*j 11-i .4~ 1398*ft .11240 .qo,%&.-a -427l-0 -. u49234 -. 6086003 -.SS70#0q .3B9S6+'4
-I *,12*2 .422-"E .&'* *S9S! 68q*?l .8S!'7."l *88z'e+o3 *351402 .12S+302 .ao0s3o03 .729o*o3

a :54564JI .1916-31 tqt9*.q5 -ICq75:q .3931+-q .4S~d-0 -- 8823#3 -. 613.03 -. S73#09 :2026:054

01*578*32 *239--34 I3A, .867S*? *5I13+N .0213+2 -.936903 -2132i402 -. 8864+03 .1012+0

rn *IS2S7j~ *22q-i3 *35.7.3S *8q99..'q .4a6-1 7L81-)q -- 6932#03 -*62SI.C.3 -. SS74o.qs #287+C%!'

I *qsb.Il .2335I-31 .13.!S *8q60*'4 .4091*.3 SC042-Oq -.934Z+G3 -*65I,*f03 -.SS70*S4 *a82'.o'f
*34S2*32 *3738-7s *6346..1 .?S61-, *,-si.-n *aqzS~f)T .sa,4*.a .2556+02 .za.4u.Cs .- s,,.n'

a *.S6*1%a .2549-Ca .1s34*?S *797p.-. *435?. a *52,5'4b-C -- 160 -. 639i*.3 -. SS7n*c% .2761#014.f
-i177#2 *3468-'Z4 .6346.+' *7237.'l *,i'.*-7 .ii2+ Ii -34*i .2769+02 *2587*04 *30S8+Oq
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Q These are the control variables used in the inviscid surface

streamline tracing section of the program. These data are

contained in card 1 of the input.

3 These are the initial conditions required to start the tracing
of each streamline utilizing the fourth order Runge-Kutta

method. These data are contained in cards Z and 3 of the

input.

These are the control variables used in the convective heating
rate section of the program. These data are contained in

cards 1, 4 and 5 of the input.

The output of the program is identified by the symbols

through @ . These are the body local flow properties,

heating rates, and characteristic dimensions calculated along
each inviscid surface streamline. The variables are defined

as follows:

Indicates the number of the inviscid surface streamline
presently being traced.

Axial location on the body surface

7I Angular location on the body surface

Local velocity

Local entropy

Local Mach number

SLocal density

Laminar adiabatic wall enthalpy

© Turbulent adiabatic wall enthalpy

Local wall enthalpy

Local flowfield temperature at the edge of the boundary layer

Local impingement pressure

O Local viscosity

Local Prandtl number

6-5
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(R9 Local metric coefficient

( Laminar characteristic running length

Turbulent characteristic running length

® Laminar convective heating rate

Turbulent convective heating rate

Laminar Reynolds number

STurbulent Reynolds number

6.3 SAMPLE RESULTS

Some of the pertinent data contained in Section 6.2 is presented graph-
ically in this section. The impingement pressure distribution and other local
flowfield properties used by the program were calculated by the Lockheed-

Huntsville PLIMP program. Figure 6-2 is a plot of inviscid surface stream-
line coordinates (0 versus X) for several initial streamline starting angles,

0 . Figure 6-3 is a plot of metric coefficient versus distance X for one of
these streamlines (9 = .05 radians). In Fig.6-2, the streamlines diverge at
an increasing rate as they proceed axially down the cylinder. The rate of
divergence at any point on the cylinder increases with increasing initial
starting angle, 9. This divergence, i.e., the spreading of the streamlines,
is reflected by the metric coefficient plot in Fig.6-3. Figure 6-4 is a plot
of the laminar impingement heating rate distribution along the streamline
with an initial starting angle, 9 = .05 radians.
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Section 7

CONCLUSIONS AND RECOMMENDATIONS

The Streamline Divergence program provides a means to make: (1)

comparative evaluations of plume impingement due to different propulsion

system configurations; (2) parametric studies; and (3) vehicle design studies.

The Streamline Divergence program has demonstrated the capability to trace

inviscid surface streamlines and calculate "outflow corrected" convective

heating rates (laminar and turbulent) on surfaces subjected to exhaust plume

impingement (or any other supersonic flow field). F.R. DeJarnette's stream-

line divergence methods are applied to determine the streamline patterns and

calculate the corresponding "equivalent radii" or metric coefficients along

each streamline for the particular geometry subjected to exhaust plume im-

pingement. For purposes of demonstration the streamline divergence method

has been applied to that of exhaust plume impingement on a cylinder. The

incorporation of other geometries into the computer code is a straightforward

procedure.

Convective heating rates are obtained from the boundary layer analysis

for both the laminar and turbulent flow assumpti.ons along each streamline.

Eckert's reference enthalpy method is used to account for the temperature

dependent property variations through the boundary layer. The local Reynolds

number is output in order for the program user to choose the most applicable

of the two heating rates.

Eckert' s reference enthalpy menthod has been chosen for use in the

convective heating rate analysis for demonstration purposes. Other methods

do exist that may be applied to the problem of exhaust plume impingement

and, can be incorporated into the computer code with a minimum of program-

ming difficulty.
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